Role of Saw1 in Rad1/Rad10 complex assembly at recombination intermediates in budding yeast.

نویسندگان

  • Fuyang Li
  • Junachao Dong
  • Robin Eichmiller
  • Cory Holland
  • Eugen Minca
  • Rohit Prakash
  • Patrick Sung
  • Eun Yong Shim
  • Jennifer A Surtees
  • Sang Eun Lee
چکیده

The Saccharomyces cerevisiae Rad1/Rad10 complex is a multifunctional, structure-specific endonuclease that processes UV-induced DNA lesions, recombination intermediates, and inter-strand DNA crosslinks. However, we do not know how Rad1/Rad10 recognizes these structurally distinct target molecules or how it is incorporated into the protein complexes capable of incising divergent substrates. Here, we have determined the order and hierarchy of assembly of the Rad1/Rad10 complex, Saw1, Slx4, and Msh2/Msh3 complex at a 3' tailed recombination intermediate. We found that Saw1 is a structure-specific DNA binding protein with high affinity for splayed arm and 3'-flap DNAs. By physical interaction, Saw1 facilitates targeting of Rad1 at 3' tailed substrates in vivo and in vitro, and enhances 3' tail cleavage by Rad1/Rad10 in a purified system in vitro. Our results allow us to formulate a model of Rad1/Rad10/Saw1 nuclease complex assembly and 3' tail removal in recombination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae

In the yeast Saccharomyces cerevisiae, the Rad1-Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1-Rad10 endonuclease cleaves 3' branches of DNA and aberrant 3' DNA ends that are refractory to other 3' processing enzymes. Here we show that yeast strains expressing fluorescently labeled Rad10 protein (Rad10-YFP) form foci...

متن کامل

A Versatile Scaffold Contributes to Damage Survival via Sumoylation and Nuclease Interactions

DNA repair scaffolds mediate specific DNA and protein interactions in order to assist repair enzymes in recognizing and removing damaged sequences. Many scaffold proteins are dedicated to repairing a particular type of lesion. Here, we show that the budding yeast Saw1 scaffold is more versatile. It helps cells cope with base lesions and protein-DNA adducts through its known function of recruiti...

متن کامل

The Rad1-Rad10 complex promotes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae.

Gross chromosomal rearrangements (GCRs) have been observed in many cancers. Previously, we have demonstrated many mechanisms for suppression of GCR formation in yeast. However, pathways that promote the formation of GCRs are not as well understood. Here, we present evidence that the Rad1-Rad10 endonuclease, which plays an important role in nucleotide excision and recombination repairs, has a no...

متن کامل

Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage.

When a replication fork collides with a DNA topoisomerase I (Top1) cleavage complex, the covalently bound enzyme must be removed from the DNA 3' end before recombination-dependent replication restart. Here we report that the tyrosyl-DNA phosphodiesterase Tdp1 and the structure-specific endonuclease Rad1-Rad10 function as primary alternative pathways of Top1 repair in Saccharomyces cerevisiae. T...

متن کامل

Lyndaker et al. 1 Mutants defective in Rad1-Rad10-Slx4 exhibit a unique pattern of viability during mating type switching in S. cerevisiae

Efficient repair of DNA double-strand breaks (DSBs) requires the coordination of checkpoint signaling and enzymatic repair functions. To study these processes during gene conversion at a single chromosomal break, we monitored mating type switching in S. cerevisiae strains defective in the Rad1-Rad10-Slx4 complex. Rad1-Rad10 is a structure-specific endonuclease that removes 3’ nonhomologous sing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 32 3  شماره 

صفحات  -

تاریخ انتشار 2013